Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
New Phytol ; 240(5): 1944-1960, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737003

RESUMO

Leaf oil terpenes vary categorically in many plant populations, leading to discrete phenotypes of adaptive and economic significance, but for most species, a genetic explanation for the concerted fluctuation in terpene chemistry remains unresolved. To uncover the genetic architecture underlying multi-component terpene chemotypes in Melaleuca alternifolia (tea tree), a genome-wide association study was undertaken for 148 individuals representing all six recognised chemotypes. A number of single nucleotide polymorphisms in a genomic region of c. 400 kb explained large proportions of the variation in key monoterpenes of tea tree oil. The region contained a cluster of 10 monoterpene synthase genes, including four genes predicted to encode synthases for 1,8-cineole, terpinolene, and the terpinen-4-ol precursor, sabinene hydrate. Chemotype-dependent null alleles at some sites suggested structural variants within this gene cluster, providing a possible basis for linkage disequilibrium in this region. Genotyping in a separate domesticated population revealed that all alleles surrounding this gene cluster were fixed after artificial selection for a single chemotype. These observations indicate that a supergene accounts for chemotypes in M. alternifolia. A genetic model with three haplotypes, encompassing the four characterised monoterpene synthase genes, explained the six terpene chemotypes, and was consistent with available biparental cross-segregation data.


Assuntos
Melaleuca , Melaleuca/genética , Melaleuca/química , Árvores/genética , Estudo de Associação Genômica Ampla , Terpenos/química , Chá
2.
GigaByte ; 2021: gigabyte28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36824337

RESUMO

The economically important Melaleuca alternifolia (tea tree) is the source of a terpene-rich essential oil with therapeutic and cosmetic uses around the world. Tea tree has been cultivated and bred in Australia since the 1990s. It has been extensively studied for the genetics and biochemistry of terpene biosynthesis. Here, we report a high quality de novo genome assembly using Pacific Biosciences and Illumina sequencing. The genome was assembled into 3128 scaffolds with a total length of 362 Mb (N50  = 1.9 Mb), with significantly higher contiguity than a previous assembly (N50  = 8.7 Kb). Using a homology-based, RNA-seq evidence-based and ab initio prediction approach, 37,226 protein-coding genes were predicted. Genome assembly and annotation exhibited high completeness scores of 98.1% and 89.4%, respectively. Sequence contiguity was sufficient to reveal extensive gene order conservation and chromosomal rearrangements in alignments with Eucalyptus grandis and Corymbia citriodora genomes. This new genome advances currently available resources to investigate the genome structure and gene family evolution of M. alternifolia. It will enable further comparative genomic studies in Myrtaceae to elucidate the genetic foundations of economically valuable traits in this crop.

3.
Front Psychiatry ; 5: 41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795657

RESUMO

Deficits in executive functions, including voluntary decisions are among the core symptoms of attention deficit/hyperactivity disorder (ADHD) patients. In order to clarify the spatiotemporal characteristics of these deficits, a simultaneous EEG/functional MRI (fMRI) study was performed. Single-trial coupling was used to integrate temporal EEG information in the fMRI analyses and to correlate the trial by trial variation in the different event-related potential amplitudes with fMRI BOLD responses. The results demonstrated that during voluntary selection early electrophysiological responses (N2) were associated with responses in similar brain regions in healthy participants as well as in ADHD patients, e.g., in the medial-frontal cortex and the inferior parietal gyrus. However, ADHD patients presented significantly reduced N2-related BOLD responses compared to healthy controls especially in frontal areas. These results support the hypothesis that in ADHD patients executive deficits are accompanied by early dysfunctions, especially in frontal brain areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA